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a b s t r a c t

Gamma-irradiation, particularly an irradiation dose of 50 kGy, has been utilised widely to sterilise highly
pathogenic agents such as Ebola, Marburg Virus, and Avian Influenza H5N1. We have reported previously
that intranasal vaccination with a gamma-irradiated Influenza A virus vaccine (c-Flu) results in cross-
protective immunity. Considering the possible inclusion of highly pathogenic Influenza strains in future
clinical development of c-Flu, an irradiation dose of 50 kGy may be used to enhance vaccine safety
beyond the internationally accepted Sterility Assurance Level (SAL). Thus, we investigated the effect of
irradiation conditions, including high irradiation doses, on the immunogenicity of c-Flu. Our data confirm
that irradiation at low temperatures (using dry-ice) is associated with reduced damage to viral structure
compared with irradiation at room temperature. In addition, a single intranasal vaccination with c-Flu
irradiated on dry-ice with either 25 or 50 kGy induced seroconversion and provided complete protection
against lethal Influenza A challenge. Considering that low temperature is expected to reduce the protein
damage associated with exposure to high irradiation doses, we titrated the vaccine dose to verify the effi-
cacy of 50 kGy c-Flu. Our data demonstrate that exposure to 50 kGy on dry-ice is associated with limited
effect on vaccine immunogenicity, apparent only when using very low vaccine doses. Overall, our data
highlight the immunogenicity of influenza virus irradiated at 50 kGy for induction of high titre antibody
and cytotoxic T-cell responses. This suggests these conditions are suitable for development of c-Flu vac-
cines based on highly pathogenic Influenza A viruses.

! 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Emergence of Highly Pathogenic Avian Influenza (HPAI) strains,
H5N1, H5N6, H7N9, and H9N2, represent major health concerns
due to the risk of worldwide pandemics [1]. Since 2003, the World
Health Organisation (WHO) reported over 800 cases of human
infection with avian H5N1, with an average mortality rate of 53%
[2]. Most infections with H5N1 occur via infected poultry, though
rare clusters of human-human transmission have been reported
between family groups in Thailand [3,4], Indonesia [5], Turkey
[6], and Vietnam [4]. HPAI may gain mutations to facilitate aerosol
transmission between humans, as notably, a mere 5 mutations in a
laboratory H5N1 strain allowed efficient aerosol transmission

between ferrets [7–9]. Existing inactivated Influenza vaccines
induce strain-specific antibody responses, hence protective effi-
cacy against emerging seasonal and pandemic strains is limited
[12,13]. We reported the possible use of gamma-irradiated Influ-
enza A virus (c-Flu) as a vaccine candidate capable of inducing
cross-protection against seasonal and pandemic virus strains
[10,11,16].

To ensure sterility of irradiated influenza materials, the concept
of Sterility Assurance Level (SAL) has been adopted and a value of
10!3 or 10!6 (one in a thousand or million chance of having live
micro-organisms after treatment) has been arbitrarily determined
and widely accepted [19]. The Australian Department of Agricul-
ture recently considered an irradiation dose of 50 kGy as manda-
tory for sterilisation of highly pathogenic agents [14,15].
Considering the risk of avian Influenza pandemics, inclusion of
HPAI strains may be warranted in future c-Flu preparations; hence
vaccine irradiation dose may be increased to meet the safety
requirement. However, increasing irradiation dose may affect vac-
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cine efficacy. In addition, while damaging effect of c-irradiation is
dose-dependent [17,18]; the extent of structural damage is influ-
enced by irradiation temperature [20,21,36–38]. Importantly, pro-
tein antigenicity is better maintained when virus samples are
irradiated on dry-ice (DI) [23]. In the current study, we investi-
gated the effect of irradiation dose and temperature on the
immunogenicity of c-Flu.

2. Materials and methods

2.1. Ethics statement

This study was conducted in strict accordance with Australian
Code of Practice for Care and Use of Animals for Scientific Purposes
(7th edition [2004], 8th edition [2013]) and South Australian Ani-
mal Welfare Act 1985. Experimental protocol approved by Animal
Ethics Committee at The University of Adelaide (S-2013/014 & S-
2016/036).

2.2. Cells & viruses

Influenza A virus [A/Puerto Rico/8/34 (H1N1) (A/PR8)] was
grown in allantoic cavity of 10-day-old embryonated chicken eggs.
Eggs injected with 103 TCID50 A/PR8, incubated for 48 h at 37 "C,
and chilled at 4 "C overnight. Allantoic fluid harvested, pooled
and stored at !80 "C. Virus stock titrated in Madin-Darby Canine
Kidney (MDCK) cells using TCID50 assay [24] and estimated as
1.5 " 106 TCID50/mL. Virus stock concentrated using chick erythro-
cytes (cRBCs) as previously described [25]. Concentrated A/PR8
stock titre estimated as 2 " 108 TCID50/mL. For Haemagglutination
Assay, live or irradiated stocks were serially diluted in PBS using
96-well round-bottom plate and 0.8% cRBCs in PBS added. Plates
were incubated at 4 "C and haemagglutination patterns analysed
24 h later.

2.3. Vaccine preparations

A/PR8 stocks inactivated by exposure to c-radiation from 60Co
irradiation facility at Australian Nuclear Science and Technology
Organisation (ANSTO), either on dry-ice or at room temperature.
Sterility confirmed by passages as recommended by WHO [26].
Lack of detectable HA activity, as measured by Haemagglutination
assay, in allantoic fluid from 3 passages indicated complete loss of
virus infectivity.

2.4. Transmission Electron Microscopy (TEM)

Irradiated A/PR8 (c-A/PR8) samples loaded into 3 mm formvar-
amorphous carbon-coated copper grids and left for 2 min. Excess
solution removed by blotting. Samples stained with 2% Uranyl
Acetate for 2 min, then blotted and left to dry at RT for 10 min
before visualisation with FEI Tecnai G2 Spirit Transmission Elec-
tron Microscope (Adelaide Microscopy, University of Adelaide).

2.5. SDS-PAGE

Irradiated and control samples heat-treated at 85 "C for 20 min.
Viral proteins separated by electrophoresis on Pre-Cast NuPAGE
Novex 4–12% Bis-Tris gel (Thermo Fisher Scientific), then stained
with Coomassie Brilliant Blue. Novex Sharp Pre-Stained Protein
Standards (Thermo Fisher Scientific) used for MW comparison.

2.6. Mice & treatment

Six-week-old female wild-type BALB/c mice (H-2d) supplied by
Laboratory Animal Services, University of Adelaide. Mice were
anaesthetized intraperitoneally (IP) with 10 lL/gram body weight
ketamine anaesthetic (1% xylazine, 10% ketamine in sterile H20),
and vaccinated intranasally (IN) with one or two doses 14 days
apart of c-A/PR8. Control animals treated with PBS. 21 days post-
vaccination, animals were anaesthetised, challenged IN with A/
PR8 (1.6 " 102 TCID50/mouse), and monitored for 3 weeks for clin-
ical symptoms and weight loss. Animals were culled if they lost
20% of starting body weight.

2.7. Measurement of influenza-specific antibody responses

Blood samples collected from all mice via submandibular bleed-
ing 20 days post-vaccination and serum levels of A/PR8-specific
IgG were determined by ELISA as described previously [27]. Absor-
bance measured at 450/620 nm using Biotrack II plate reader, end
point titres expressed as reciprocal of the last dilution where OD
valueP cut-off value. Cut-off value was determined as mean
+(3 " S.D.) of OD values of samples from control mice.

2.8. In vitro neutralisation assay

96-well tissue-culture plates seeded with 6 " 104 MDCK cells/
well. A/PR8 activated by treatment with 2 lg/mL TPCK-trypsin
(Sigma-Aldrich) for 30 min at 37 "C. Heat-inactivated sera were
serially diluted, mixed with A/PR8 (diluted in allantoic fluid
+ 4 lg/mL TPCK-trypsin) in 1:1 ratio, and incubated for 1 h at
37 "C. Mixture added to MDCK monolayers at MOI of 0.1 and incu-
bated for 2 h at 37 "C. Then, inoculum was removed, monolayers
washed with PBS and returned to incubator for 22 h in serum-
free media. Monolayers washed, fixed and permeabilised with ace-
tone/methanol (1:1 ratio) at 4 "C and incubated with polyclonal
murine anti-A/PR8 sera (generated as previously described [28])
for 1 h at 4 "C. Alexa-Fluor# 488 goat anti-mouse IgG (H + L) (Life
Technologies) added for 1 h at 4 "C. Nuclei stained with DAPI
(1 lg/mL) for 30 min at room temperature (RT). Images acquired
using a Nikon TiE inverted fluorescence microscope and analysed
using NIS elements software (Tokyo, Japan).

2.9. Cytotoxic T-cell assay

Mice primed by intravenous injection of live or c-A/PR8. 6 days
later, target splenocytes from naïve mice labelled with 5,6-
carboxyfluorescein diacetate succinimidyl ester (CFSE)
(0.125 mM) or CellTraceTM Far-Red DDAO-SE (2 lM, Thermo Fisher
Molecular-Probes). CFSE population pulsed with Influenza A nucle-
oprotein peptide (GL Biochem (Shanghai) Ltd, sequence: TYQR-
TRALV). Target cells mixed at 1:1 ratio (CFSE/CellTrace Red) and
adoptively transferred into primed mice using intravenous injec-
tion (107 cells/mouse). 24 h later, mice sacrificed, spleens har-
vested, processed to single-cell suspensions, and analysed using
FACS (LSRII, BD Biosciences). Data analysed using FlowJo (Treestar
Incorporated). Specific lysis as follows: lysis [%] = [1 ! (%primed
pulsed targets/%primed non-pulsed targets)/(%unprimed pulsed
targets/%unprimed non-pulsed targets)] " 100.

2.10. Statistical analysis

Quantitative results expressed as mean ± SEM. Unpaired Stu-
dent’s t-test used for comparison of data from two separate groups,
and One-way ANOVA used for comparison of data from 3 or more
groups. Statistical analysis performed using GraphPad Prism 6, ver-
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sion 6.0d (GraphPad Software, La Jolla, CA, USA). P values < 0.05
(95% confidence) considered statistically significant.

3. Results

3.1. The effect of irradiation conditions on HA titres and virion
morphology

A/PR8 virus samples were exposed to 25 or 50 kGy of c-
radiation, either at room temperature (RT) or on dry-ice (DI).
Haemagglutination assay used to determine the effect of irradia-
tion conditions on HAU titres. Fig. 1A shows RT irradiation resulted
in 90% and 99% loss of HAU titres for 25 and 50 kGy respectively. In
contrast, only 50% loss in HAU was detected after irradiation on DI,
regardless of irradiation dose. Considering that HAU titre is depen-
dent on binding of HA to cRBCs, loss in HAU titres after irradiation
at RT may be associated with structural damage. Therefore, TEM
was used to visualise overall structure of irradiated viruses
(Fig. 1B). Samples irradiated on DI show a more intact virus struc-
ture compared to preparations irradiated at RT. It should be noted
that DI samples were resolved at 220,000" magnification, whilst
clear resolution for RT samples could only be visualised at lesser
magnification of 135,000". Additionally, we detected dark aggre-
gates in RT images, indicating potential formation of protein aggre-
gates or split viral particles. We used SDS-PAGE to compare
integrity of viral proteins in irradiated samples and non-
irradiated controls. All major viral proteins were visible in control
non-irradiated samples (Fig. 1C). The three influenza polymerase

proteins resolved as two bands, with PB1 and PB2 migrating
together to form a less defined band. Bands consistent with molec-
ular weights for NP and M1 were visible for all samples. Impor-
tantly, uncleaved (HA0) and cleaved (HA1, HA2) forms of HA
were present in control samples and DI irradiated samples. In con-
trast, HA0 and HA1 bands appeared faint in RT irradiated samples,
consistent with reduced HAU titres. Furthermore, lanes related to
RT samples showed an increase in smearing of proteins as opposed
to formation of discrete bands, indicative of increased protein
damage. Considering the significant reduction in HA titre and the
observed effect on virion structure and protein integrity (Fig. 1),
RT samples were considered inappropriate vaccine preparations
and excluded from further testing.

3.2. Estimating D10 value and SAL

Sterility of 25 and 50 kGy-irradiated materials was confirmed
using 3 passages in 10-day-old embryonated eggs. Additionally,
to test whether these doses met the internationally accepted SAL,
aliquots of cRBC-concentrated live virus were subjected to differ-
ent irradiation doses and tested for reduction in virus titre using
TCID50 assay. We detected a log-linear relationship between the
increased irradiation dose and the associated reduction in virus
titre (Fig. 2). Based on this linear inactivation curve (R2 = 0.9511),
we estimated a D10 value of 2.04 kGy. To calculate SAL, we consid-
ered the linear inactivation curve, the D10 value, the initial titre of
2 " 108 TCID50/mL, and the need for 11 or 14 log10 titre reductions
to achieve SAL of 10!3 or 10!6, respectively. Therefore, SAL for our

Fig. 1. The effect of irradiation dose and temperature on the structure of Influenza A virus. (A) A/PR8 samples exposed to 25 or 50 kGy of c-irradiation either on dry-ice (DI) or
at room temperature (RT). 0 kGy samples were used as controls and virus titre was estimated using haemagglutination assay and expressed as HAU/mL. Each column
indicates mean value of quadruplicates ± SEM, and data analysed by One-way ANOVA (*P < 0.05). (B) Transmission Electron Microscopy (TEM) used to visualise morphology
changes following irradiation on dry-ice using 25 kGy (i) or 50 kGy (ii), or RT using 25 kGy (iii) or 50 kGy (iv). Virus preparations negatively stained with 2% uranyl acetate and
visualised using FEI Tecnai G2 Spirit Transmission Electron Microscope. (C) SDS-PAGE of heat-lysed Influenza preparations, both irradiated samples and non-irradiated
controls. Influenza proteins labelled according to their known MW from UniProtKB database (Influenza A virus (strain A/Puerto Rico/8/1934 H1N1)), and according to those
identified by Shaw et al. [47].
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vaccine could be calculated using the formula ‘‘SAL = D10

value " 11” or ‘‘SAL = D10 value " 14”, giving 22.4 kGy or
28.6 kGy for SAL value of 10!3 or 10!6, respectively. This indicates
that materials exposed to 25 or 50 kGy meet the internationally
accepted SAL for c-irradiated pathogens. In fact, 50 kGy represents
a much higher dose than required to achieve sterility, representing
about 24 log10 reductions in virus titre. Importantly, we confirmed
complete inactivation of our preparations in accordance with WHO
recommended method of two passages in 10-day-old embryonated
eggs [26], and performed 3 passages with no detectable HA in
allantoic fluid.

3.3. The effect of irradiation dose on induction of protective immunity

To study the effect of irradiation dose on vaccine efficacy, mice
were vaccinated with 25 or 50 kGy c-A/PR8 irradiated on dry-ice.
Serum samples were taken on day 20 post-vaccination and anal-
ysed for Flu-specific IgG titres using ELISA. Fig. 3A shows both
preparations induced elevated A/PR8-specific IgG titres in serum
following mucosal vaccination compared to controls and titres
for 25 and 50 kGy c-A/PR8 vaccinated groups were comparable.
Additionally, vaccinated and control animals were challenged IN
with lethal A/PR8 21 days post-vaccination, and monitored for
clinical symptoms and weight loss. Fig. 3B shows c-A/PR8 irradi-
ated with either 25 or 50 kGy induced 100% protection against
lethal IN challenge and vaccinated mice did not show any weight
loss compare to controls. Our data indicate that both preparations
(25 and 50 kGy) are highly immunogenic and show comparable
protective efficacies when using 32 lL/mouse of undiluted vaccine
preparation (6.4 " 106 TCID50 equivalent/mouse).

3.4. The effect of vaccine dose on vaccine efficacy

Our data and published studies [21,29–34] clearly indicate that
structural damage could be controlled using freezing irradiation
conditions. Nonetheless, increased exposure to c-rays may be asso-
ciated with reduced vaccine efficacy, albeit to a limited extend. To
test this, mice were vaccinated with a single intranasal dose of c-A/
PR8, using either one-half or one-eighth of the dose used in Fig. 3.
Protective efficacy was monitored following challenge with live A/
PR8. Fig. 4A shows that vaccination with reduced doses of 25 or

50 kGy c-A/PR8 resulted in 100% survival. However, we observed
some weight loss (#10%) in animals vaccinated with one-eighth
dose of 50 kGy c-A/PR8 prior to full recovery. No weight loss was
observed for the other vaccinated groups. We also analysed anti-
body responses; whilst all reduced doses induced seroconversion
following intranasal vaccination, we detected a 50% reduction in
IgG titres in serum samples from mice vaccinated with 50 kGy c-
A/PR8 compared to samples from mice vaccinated with 25 kGy
c-A/PR8. However, this reduction did not reach statistical signifi-
cance (Fig. 4B). This indicates that while 50 kGy c-A/PR8 appears
to be immunogenic and confers high protective efficacy, exposure
to 50 kGy may be associated with some damage to viral proteins.
As such, this may have affected antibody responses and the ability
of c-A/PR8 to induce protection without weight loss, when using a
reduced antigen dose.

To further investigate the effect of high radiation dose on c-A/
PR8, we employed a two-dose vaccination strategy using a very
low vaccine dose of 5 " 104 TCID50 equivalent/mouse, approxi-
mately one-hundredth of the dose used in Fig. 3. A single vaccina-
tion with this reduced vaccine dose was not sufficient to induce
protective immunity against lethal challenge, regardless of irradia-
tion dose (Fig. 5A). Consequently, mice were vaccinated with two
doses of 5 " 104 TCID50 equivalent, two weeks apart, followed by
a lethal A/PR8 challenge 3 weeks later. When considering the
two-dose strategy, vaccination with 25 kGy c-A/PR8 resulted in
significant protection (50% survival) following homotypic chal-
lenge. In contrast, two-dose vaccination with 50 kGy c-A/PR8
was not associated with any protection. Interestingly, analysing
antibody titres in serum harvested 24 h pre-2nd vaccination and
24 h pre-challenge showed both 25 and 50 kGy c-A/PR8 induced
comparable Flu-specific IgG titres (Fig. 5B). Additionally, in vivo
CTL assay was performed to determine whether the observed dif-
ference in protection was due to T-cell mediated mechanisms
rather than antibody responses. As shown in Fig. 5C, 50 kGy c-A/
PR8 induced slightly less potent CTL responses against nucleopro-
tein peptide (NPP) pulsed target cells compared to both 25 kGy c-
A/PR8 and live virus control, however this trend was not statisti-
cally significant.

3.5. Neutralising antibody responses induced by c-A/PR8

Antibody levels detected using ELISA in immune sera frommice
vaccinated with 25 and 50 kGy c-A/PR8 did not differ significantly,
despite observed differences in protective efficacies (Fig. 5). There-
fore, we investigated whether high radiation dose affected the
quality of humoral responses rather than quantity. Serum samples
from mice vaccinated with 6.4 " 106 TCID50 and 2 doses of
5 " 104 TCID50 c-A/PR8 were tested using an in vitro neutralisation
assay to quantify neutralising antibody responses. MDCK cells
were infected with sera-treated A/PR8 at MOI of 0.1. PBS-treated
A/PR8 was used as a virus-only control. Fluorescent staining of
infected monolayers showed incubation of A/PR8 with sera from
control mice (mock-sera) did not affect the ability of A/PR8 to
infect MDCK cells, as infectivity for both mock-sera treated virus
and the virus-only control were comparable. Importantly, A/PR8
treatment with immune sera from mice vaccinated with
6.4 " 106 TCID50 of 25 and 50 kGy c-A/PR8 showed complete abro-
gation of virus infectivity (100% neutralisation), indicating that
both vaccines induced strong neutralizing antibody responses
(Fig. 6A). Different serum dilutions (1:20, 1:40 and 1:80) were also
tested, and no difference in virus neutralisation was detected. Con-
versely, when testing serum samples from mice vaccinated with
5 " 104 TCID50 c-A/PR8, we detected differences in virus neutrali-
sation between immune sera from mice vaccinated with 25 versus
50 kGy c-A/PR8. Importantly, serum samples from both 25 and
50 kGy c-A/PR8 vaccinated groups induced significant virus neu-

Fig. 2. Inactivation curve of A/PR8 following exposure to different doses of c-rays.
Samples of A/PR8 virus were exposed to increasing doses of c-irradiation, and virus
infectivity was determined by TCID50 assay. Background level was measured by the
binding of cRBCs to A/PR8 after incubation for 5 days in the absence of MDCK cells.
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tralisation when compared to control samples. However, neutrali-
sation ability between samples from vaccinated groups was differ-
ent, as sera from the 25 kGy c-A/PR8 vaccinated group appeared to
be # 2.3-fold more effective at neutralizing A/PR8 (determined by
difference between means of normalized FITC fluorescence) when
compared to sera from 50 kGy c-A/PR8 vaccinated mice (Fig. 6B).

4. Discussion

Rapid emergence of HPAI strains highlights the urgent need to
develop safe vaccines capable of providing protection against cir-
culating as well as emerging pandemic Influenza A viruses. We
reported previously that vaccination with c-Flu confers protection
against lethal homotypic and heterosubtypic Influenza A virus
challenges, including HPAI H5N1 [10,35]. Considering the risk of
a worldwide pandemic, inclusion of HPAI virus strains may be
desirable in future clinical developments of c-Flu. To comply with

safety regulations regarding irradiation of pathogenic agents,
50 kGy may be considered. Therefore, we estimated the irradiation
dose required to achieve a SAL of 10!3 or 10!6, and investigated the
effect of high irradiation dose and temperature conditions on c-Flu
efficacy.

It has been reported previously that freezing target materials at
ultra-low temperatures during irradiation reduces free radical for-
mation and consequently minimizing the indirect damage to pro-
teins [21,33]. For example, c-irradiation of frozen plasma
samples has been effective in sterilizing HIV virus with minimal
impact on functionality of coagulation factors [40]. Furthermore,
irradiation of freeze-dried materials was associated with main-
tained protein biological activity even after exposure to 45 kGy
[39]. Our data indicate that we could maintain surface protein
functionality and viral morphology by irradiating frozen materials
in contrast to irradiation at RT. Interestingly, Feng et al. [22] used
SDS-PAGE to demonstrate the decrease in the abundance of Murine
Norovirus-1 capsid protein VP1 as irradiation dose increased. We

Fig. 3. Intranasal vaccination with 25 kGy and 50 kGy c-A/PR8 induces homotypic protection against lethal challenge. Mice vaccinated IN with 6.4 " 106 TCID50

equivalent/mouse of c-A/PR8 vaccine irradiated with 25 or 50 kGy on dry-ice. (A) Serum samples harvested on day 20 post-vaccination were analysed for Flu-specific IgG by
direct ELISA using serial serum dilutions, and 1:100 dilution of immune sera was selected for statistical analysis. (B) Weight loss of vaccinated mice following IN challenge on
day 21with lethal dose of A/PR8, and percentage survival. Data compiled from two independent experiments (n = 10). Data analysed by (A) One-Way ANOVA and (B) Fisher’s
Exact test (****P < 0.0001).
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Fig. 4. The efficacy of c-A/PR8 vaccine. Mice vaccinated IN with 3.2 " 106 or 8.0 " 105 TCID50 equivalent/mouse of c-A/PR8 vaccine irradiated on dry-ice. (A) Weight loss of
vaccinated mice following IN challenge with lethal dose of A/PR8. (B) Serum samples harvested on day 20 post-vaccination were analysed for Flu-specific IgG by direct ELISA.
Absorbance readings at 450/620 nm of naïve sera used to calculate relative IgG titres. Data presented as mean ± SEM, and analysed by One-Way ANOVA (⁄, P < 0.05).

Fig. 5. Enhanced protective efficacy of 25 kGy c-A/PR8 compared to 50 kGy when using low vaccine dose. (A) Mice vaccinated IN with either a single dose of c-A/PR8
irradiated on dry-ice (5 " 104 TCID50 equivalent/mouse), or two doses administered two weeks apart. 3 weeks post-vaccination, mice were challenged IN with lethal dose of
A/PR8, and monitored for survival. Data presented as survival rate (n = 10), and analysed by Fisher’s exact test (*P < 0.05). (B) Serum samples harvested via submandibular
bleed 24 h pre-challenge from all mice, and tested for Flu-specific IgG using direct ELISA. Absorbance readings at 450/620 nm of naïve sera used to calculate relative IgG titres.
Data presented as mean ± SEM, significance determined by One-Way ANOVA (*P < 0.05). (C) CTL-mediated killing of NPP pulsed target splenocytes 24 h after adoptive transfer
into mice primed with live influenza, 25 kGy or 50 kGy c-A/PR8 (dry-ice irradiated). Percentage killing determined in relation to unprimed controls, data presented as
mean ± SEM and analysed by One-Way ANOVA.
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showed a similar trend for c-A/PR8 samples irradiated at RT as we
detected increased protein smearing with higher irradiation dose,
as opposed to formation of many discrete bands (Fig. 1C). In con-
trast, materials irradiated on dry-ice showed discrete protein
bands, particularly key proteins NA, HA1, and NP (45, 55, and
56 kDa respectively) that were maintained even following expo-
sure to 50 kGy. In addition, RT samples failed to induce flu-
specific serum antibody responses and sufficient homotypic pro-
tection (data not shown). Thus, we concluded that irradiation at
RT is not suitable for vaccine development.

To ensure our dry-ice preparations satisfied requirements for
internationally accepted standards [15,41–43], we established
the killing curve of A/PR8 using vaccine samples irradiated at dif-
ferent doses. Our data show a clear log-linear relationship between
increased irradiation doses and the associated reduced virus titre.
This mathematical relationship was used to calculate a D10 value

of 2.04 kGy and a SAL value of 22.4–28.6 kGy. Therefore, 25 kGy
sufficiently complies with guidelines of the International Atomic
Energy Agency (IAEA) and International Standards Organisation
(ISO). It is important to note that guidelines related to SAL should
be accompanied by approved sterility tests, which we performed
based on WHO recommendations. While SAL for our preparation
is achieved using 25 kGy, 50 kGy may still be desirable to inacti-
vate HPAI. Interestingly, 50 kGy is reported as the lowest dose cap-
able of inactivating Venezuelan equine encephalitis virus (VEEV)
[44], and an exposure to 50 kGy on dry-ice was reported to reduce
c-VEEV antigenicity and epitope integrity [45]. In contrast, our
data show vaccination with 25 or 50 kGy dry-ice c-A/PR8 resulted
in significantly elevated A/PR8-specific IgG titres and 100% protec-
tion against lethal challenge.

Despite high efficacy of 50 kGy c-A/PR8, we further investigated
whether exposure to high irradiation dose affected vaccine

Fig. 6. In vitro A/PR8 neutralisation by immune sera from vaccinated mice. Mice vaccinated IN with (A) 6.4 " 106 TCID50, or (B) two doses of 5 " 104 TCID50 equivalent c-A/
PR8 irradiated on dry-ice. Serum samples harvested via submandibular bleed on day 20 post-vaccination, and neutralisation efficacy of naïve (PBS mock-vaccinated) and c-A/
PR8-vaccinated immune sera at 1:10 dilution determined by in vitro neutralisation assay. After incubation with sera-treated virus, A/PR8 positive MDCK cells visualised using
Nikon TiE inverted fluorescence microscope, with DAPI channel detecting cell nuclei, and FITC channel detecting A/PR8. Scale bar = 100 lm. FITC fluorescence quantified using
NIS elements software, and normalised using corresponding quantified DAPI fluorescence. Data presented as mean ± SEM (n = 8), and significance determined by One-Way
ANOVA (**P < 0.01, ***P < 0.001, ****P < 0.0001).
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immunogenicity, and whether increased vaccination dose could
overcome such effects. To address these possibilities, we used
reduced c-A/PR8 vaccine doses. Remarkably, these doses conferred
100% protection against lethal challenge. We did notice that ani-
mals vaccinated with 8 " 105 TCID50 equivalent/mouse (one-
eighth dose) of 50 kGy c-A/PR8 lost some weight prior to full
recovery, in contrast to animals vaccinated with the same dose of
25 kGy c-A/PR8. This minor difference in vaccine efficacy was con-
firmed using a severely reduced vaccine dose (5 " 104 TCID50

equivalent/mouse) administered using a two-dose strategy. While
25 and 50 kGy c-A/PR8 induced comparable levels of A/PR8-
specific IgG, we detected a significant difference in A/PR8 neutral-
isation by immune sera associated the difference in vaccine protec-
tive efficacy using this low-dose setting. Interestingly, a study
investigating c-irradiation of allergens showed irradiation with
15 kGy abolished binding of IgE from allergic individuals to aller-
gen proteins [46]. High irradiation potentially damaged allergen
epitopes, consequently affecting antibody binding. Similarly, anti-
bodies induced by 50 kGy-treated virus samples may recognise
slightly damaged epitopes rather than native epitopes, hence live
virus epitopes are less well recognised and consequently virus neu-
tralisation is reduced. Importantly, our data indicate that using
higher vaccination doses could overcome the reduced efficacy of
50 kGy c-A/PR8, as equal and highly effective virus neutralisation
for 25 and 50 kGy c-A/PR8 was observed when using high vaccine
dose. Additionally, both 25 and 50 kGy c-A/PR8 preparations
induced CTL responses against internal Influenza peptides that
resembled CTL activity induced by live virus.

5. Conclusion

Overall, our data show no detectable difference in performance
between 25 and 50 kGy c-A/PR8 when using standard doses.
Reduction in 50 kGy c-A/PR8 efficacy is only apparent when using
intentionally low vaccination dose, which is not relevant to a clin-
ical setting nor for future c-Flu development. This study has
demonstrated the suitability of using freezing conditions for c-
irradiation of viruses to produce inactivated vaccines that elicit
strong protective immunity. This supports the use of 50 kGy for
developing future c-Flu vaccines that include HPAI virus strains.
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